Iterative splitting schemes for a fully dynamic poroelasticity model

Jakub W. Both*,‡, Nicolas A. Barnafi¶, Florin A. Radu‡, Paolo Zunino† and Alfio Quarteroni†

*‡ Department of Mathematics
University of Bergen
Bergen, Norway
e-mail: {jakub.both, florin.radu}@uib.no

¶ Department of Mathematics
University of Milan
Milan, Italy
e-mail: nicolas.barnafi@unimi.it

† Laboratory for Modeling and Scientific Computing (MOX)
Politecnico di Milano
Milan, Italy
e-mail: {paolo.zunino, alfio.quarteroni}@polimi.it

Key Words: Extended Biot equations, fully dynamic poroelasticity, sequential solvers, biomedical applications

ABSTRACT

Sequential block-partitioned solvers have in the recent past been quite popular for multi-physics and in particular poroelasticity models. Such enable tailored solver technology for the respective single-physics problems via iterative coupling, as well as suggest suitable block-preconditioners for monolithic solvers.

In this talk, we focus on a thermodynamically consistent poroelasticity model recently proposed in [1]. It extends the classical quasi-static Biot equations by incorporating inertia contributions in both solid and fluid equations, aiming at biomedical applications; for instance, the perfusion of the heart.

Following ideas and techniques from previous works [2, 3], we present block-partitioned solvers for the fully dynamic poroelasticity model supported by theoretical convergence analysis [4].

REFERENCES


