Interface Preconditioners for Multiphysics Problems

Ana Budiša1, Xiaozhe Hu2, Miroslav Kuchta3, Kent–Andre Mardal4 and Ludmil Zikatanov5

1 Simula Research Laboratory
Fornebu, Norway
e-mail: ana@simula.no

2 Department of Mathematics
Tufts University
Medford, MA 02155, USA
e-mail: xiaozhe.hu@tufts.edu

3 Simula Research Laboratory
Fornebu, Norway
e-mail: miroslav@simula.no

4 Department of Mathematics
University of Oslo
Oslo, Norway
e-mail: kent-and@math.uio.no

5 Department of Mathematics
The Pennsylvania State University
University Park, PA 16802, USA
e-mail: ludmil@psu.edu

Key Words: Numerical methods, preconditioning, multiphysics, coupled problems, porous media.

ABSTRACT

Our work concerns preconditioners for coupled multiphysics problems with a special interest in interfacial coupling. In many cases, the interface problems are naturally formulated as a sum of fractional Laplace equations including both negative and positive fractionalities.

To solve efficiently such problems, we first present the factorization-based approach to handling the sum of fractionalities, which results in a multiplicative solver composed of multigrid methods. Alternatively, we also apply the rational approximation method as an additive solver that represents the fractional power as a sum of rational functions.

We showcase the effectiveness and robustness of our methods both analytically and numerically on several numerical examples, such as Darcy-Stokes and 1D-3D problems.