A discontinuous Galerkin time integration scheme for second order differential equations with applications to seismic wave propagation problems

Ilario Mazzieri*, Paola F. Antonietti†

* MOX - Department of Mathematics
 Politecnico di Milano
 Milano, Italy
 e-mail: ilario.mazzieri@polimi.it

† MOX - Department of Mathematics
 Politecnico di Milano
 Milano, Italy
 e-mail: paola.antonietti@polimi.it

Key Words: space-time methods, discontinuous Galerkin, elastodynamics

ABSTRACT

In this work, we present a new space-time Discontinuous Galerkin (DG) scheme for second-order hyperbolic problems. The method is a combination of a DG space discretization on polygonal grid and a DG time integration scheme for second-order differential equations. We show that the resulting discrete formulation is well-posed, stable and retains super-optimal rate of convergence with respect to the time discretization parameters, namely the time step and the polynomial approximation degree. A set of two- and three-dimensional numerical experiments confirm the theoretical bounds. Finally, we show the application of the method to realistic geophysical applications.